

With many contributors:

A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers, W. Darling, J. Droppo, A. Eversole, B. Guenter, P. He, M. Hillebrand, X. Huang, Z. Huang, R.

Hoens, V. Ivanov, A. Kamenev, N. Karampatziakis, P. Kranen, O. Kuchaiev, W. Manousek, C. Marschner, A. May, B. Mitra, O. Nano, G. Navarro, A. Orlov, M.

Radmilac, A. Reznichenko, P. Parthasarathi, S. Pathak, B. Peng, A. Reznichenko, W. Richert, F. Seide, M. Seltzer, M. Slaney, A. Stolcke, T. Will, H. Wang, Z.

Wang, W. Xio. Yao, D. Yu, C. Zhang, Y. Zhang, G. Zweig

Microsoft

Cognitive

Toolkit

deep learning at Microsoft

• Microsoft Cognitive Services

• Skype Translator

• Cortana

• Bing

• HoloLens

• Microsoft Research

Microsoft

Cognitive

Toolkit

Microsoft

Cognitive

Toolkit

ImageNet: Microsoft 2015 ResNet

28.2
25.8

16.4

11.7

7.3 6.7
3.5

ILSVRC
2010 NEC
America

ILSVRC
2011 Xerox

ILSVRC
2012

AlexNet

ILSVRC
2013 Clarifi

ILSVRC
2014 VGG

ILSVRC
2014

GoogleNet

ILSVRC
2015 ResNet

ImageNet Classification top-5 error (%)

Microsoft had all 5 entries being the 1-st places this year: ImageNet classification,

ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation

Microsoft

Cognitive

Toolkit

Microsoft

Cognitive

Toolkit

deep learning at Microsoft

• Microsoft Cognitive Services

• Skype Translator

• Cortana

• Bing

• HoloLens

• Microsoft Research

Microsoft

Cognitive

Toolkit

24%

14%

Microsoft

Cognitive

Toolkit

Microsoft’s historic
speech breakthrough

• Microsoft 2016 research system for

conversational speech recognition

• 5.9% word-error rate

• enabled by CNTK’s multi-server scalability

[W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke,

D. Yu, G. Zweig: “Achieving Human Parity in Conversational

Speech Recognition,” https://arxiv.org/abs/1610.05256]

Youtube Link

https://www.youtube.com/watch?v=eu9kMIeS0wQ;start=70

Microsoft Customer
Support Agent

Microsoft

Cognitive

Toolkit

Benchmarking on a single server by HKBU

“CNTK is production-ready: State-of-the-art accuracy, efficient,
and scales to multi-GPU/multi-server.”

FCN-8 AlexNet ResNet-50 LSTM-64

CNTK 0.037 0.040 (0.054) 0.207 (0.245) 0.122

Caffe 0.038 0.026 (0.033) 0.307 (-) -

TensorFlow 0.063 - (0.058) - (0.346) 0.144

Torch 0.048 0.033 (0.038) 0.188 (0.215) 0.194

G980

Recent update

• With a single GPU platform:
• Caffe, CNTK and Torch perform better than MXNet and TensorFlow on FCNs

• MxNet is outstanding in CNNs, while Caffe and CNTK also achieve good
performance.

• For RNN of LSTM, CNTK obtains excellent time efficiency, which is up to 5-10
times better than other tools.

• CNTK out performs TensorFlow on all categories often by a large margin.

https://arxiv.org/pdf/1608.07249v6.pdf

Microsoft

Cognitive

Toolkit

“CNTK is production-ready: State-of-the-art accuracy, efficient,
and scales to multi-GPU/multi-server.”

Theano only supports 1 GPU

Achieved with 1-bit gradient quantization
algorithm

0

10000

20000

30000

40000

50000

60000

70000

80000

CNTK Theano TensorFlow Torch 7 Caffe

speed comparison (samples/second), higher = better

[note: December 2015]

1 GPU 1 x 4 GPUs 2 x 4 GPUs (8 GPUs)

Superior performance

Superior performance

What is new in CNTK 2.0?

https://esciencegroup.com/2016/11/10/cntk-revisited-a-new-deep-learning-toolkit-release-from-microsoft/

Microsoft has now released a major upgrade of the software

and rebranded it as part of the Microsoft Cognitive

Toolkit. This release is a major improvement over the initial

release.

There are two major changes from the first release that you

will see when you begin to look at the new release. First is

that CNTK now has a very nice Python API and, second, the

documentation and examples are excellent.

Installing the software from the binary builds is very easy on

both Ubuntu Linux and Windows.

• CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting
relevant network types and applications.

• CNTK is production-ready: State-of-the-art accuracy, efficient, and scales
to multi-GPU/multi-server.

The Microsoft Cognitive Toolkit (CNTK)

• open-source model inside and outside the company
• created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit”

• open-sourced (CodePlex) in early 2015

• on GitHub since Jan 2016 under permissive license

• Python support since Oct 2016 (beta), rebranded as “Cognitive Toolkit”

• used by Microsoft product groups; but code development is out in the open

• external contributions e.g. from MIT and Stanford

• Linux, Windows, docker, cudnn5, CUDA 8

• Python and C++ API (beta; C#/.Net on roadmap)

• Keras integration in progress

“CNTK is Microsoft’s open-source, cross-platform toolkit
for learning and evaluating deep neural networks.”

Microsoft

Cognitive

Toolkit

• CNTK is a library for deep neural networks
• model definition

• scalable training

• efficient I/O

• easy to author, train, and use neural networks
• think “what” not “how”

• focus on composability

• Python, C++, C#, Java

• open source since 2015 https://github.com/Microsoft/CNTK

• created by Microsoft Speech researchers (Dong Yu et al.) in 2012, “Computational Network Toolkit”

• contributions from MS product groups and external (e.g. MIT, Stanford), development is visible on Github

• Linux, Windows, docker, cudnn5, CUDA 8

Microsoft Cognitive Toolkit, CNTK

MNIST Handwritten Digits (OCR)

• Data set of hand written digits with
60,000 training images

10,000 test images

• Each image is: 28 x 28 pixels

• Performance with different classifiers (error rate):
Neural nets (2-layers): 1.6 %

Deep nets (6-layers): 0.35 %

Conv nets (different): 0.21% - 0.31%

Handwritten
Digits

1 5 4 3
5 3 5 3
5 9 0 6

Corresponding
Labels

28 pix

2
8

 pix

.

784 pixels (x)

S S

weights (W)

= map to (0-1) range
Activation function

784

10

Model

Logistic Regression

SBias (10)

(𝑏)
0 1 9

…

784 pixels (Ԧ𝑥)

Ԧ𝑧 = W Ԧ𝑥𝑇 + 𝑏

Weights (W)

784

Single-Layer Perceptron

28 pix

2
8

 pix

.

784 pixels (x)

S

= Activation function

Dense Layer

D
i = 784
O= 400
a = sigmoid

D Dense Layer

400 nodesS S

Model

S

400

Bias (10)

(𝑏)

784 pixels (Ԧ𝑥)

Ԧ𝑧 = Ԧ𝑧 = W Ԧ𝑥𝑇 + 𝑏

Multi-layer Perceptron

28 pix

2
8

 pix

.

784 pixels (x)

.

D
400 nodes i = 784

O= 400
a = relu

D
200 nodes i = 400

O= 200
a = relu

D
10 nodes i = 200

O= 10
a = None

0.08 0.08 0.10 0.17 0.11 0.09 0.08 0.08 0.13 0.01softmax

Weights

784

400 + 400 bias

400

200 + 200 bias

200

10 + 10 bias

Deep
Model

28 pix

2
8

 pix

.

28 x 28 pix (p)

Error or Loss Function

Loss
function

se = σ𝑗= 0
9 𝑦𝑗 − 𝑝𝑗

2
Squared error

ce = −σ𝑗=0
9 𝑦𝑗 𝑙𝑜𝑔 𝑝𝑗

Cross entropy
error

1 5 4 3
5 3 5 3
5 9 0 6

Label One-hot encoded (Y)

0 0 0 1 0 0 0 0 0 0

Model
(w, b)

Predicted Probabilities (p)

0.08 0.08 0.10 0.17 0.11 0.09 0.08 0.08 0.13 0.01

Train Workflow

MNIST
Train

1
2

8
 s

a
m

pl
es

(m
in

i-
ba

tc
h

)

.
.

.
.

3

7

8

0

Input feature (X: 128 x 784)

One-hot
encoded
Label

(Y: 128 x 10)

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

.

.

.

Model

z = model(X):

h1 = Dense(400, act = relu)(X)

h2 = Dense(200, act = relu)(h1)

r = Dense(10, act = None)(h2)

return r

Weights

784

400

+
400

400

200

+
200

200

10

+
10bias

Model Parameters

Loss cross_entropy_with_softmax(p,Y)

Trainer(model, (loss, error), learner)

Trainer.train_minibatch({X, Y})

Error
(optional)

classification_error(p,Y)

Learner
sgd, adagrad etc, are solvers to estimate – W & b

Test Workflow

Learner
This is a dummy parameter during test pass

Model

z = model(X):

h1 = Dense(400, act = relu)(X)

h2 = Dense(200, act = relu)(h1)

r = Dense(10, act = None)(h2)

return r

Weights

784

400

+
400

400

200

+
200

200

10

+
10bias

Model Parameters
MNIST

Test

.
.

.
.

3

7
8

0

Input feature (X*: 32 x 784)
3

2
sa

m
pl

es
(m

in
i-

ba
tc

h
)

One-hot
encoded
Label

(Y*: 32 x 10)

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

MNIST
Train

Loss cross_entropy_with_softmax(z,Y)

Trainer.test_minibatch({X, Y})

Error classification_error(z,Y)

Prediction Workflow

Any
MNIST

.9

Input feature (new X: 1 x 784)
Model
(w, b)

Model.eval(new X)

0.02 0.09 0.03 0.03 0.01 0.02 0.02 0.06 0.02 0.70

Predicted Softmax Probabilities (predicted_label)

[numpy.argmax(predicted_label) for predicted_label in predicted_labels]

[9]

“CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting
relevant network types and applications.”

example: 2-hidden layer feed-forward NN

h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1)

h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2)

P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout)

with input x RM and one-hot label L RM

and cross-entropy training criterion

ce = LT log P ce = cross_entropy (L, P)

Scorpusce = max

“CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting
relevant network types and applications.”

example: 2-hidden layer feed-forward NN

h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1)

h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2)

P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout)

with input x RM and one-hot label y RJ

and cross-entropy training criterion

ce = yT log P ce = cross_entropy (L, P)

Scorpusce = max

“CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting
relevant network types and applications.”

example: 2-hidden layer feed-forward NN

h1 = s(W1 x + b1) h1 = sigmoid (x @ W1 + b1)

h2 = s(W2 h1 + b2) h2 = sigmoid (h1 @ W2 + b2)

P = softmax(Wout h2 + bout) P = softmax (h2 @ Wout + bout)

with input x RM and one-hot label y RJ

and cross-entropy training criterion

ce = yT log P ce = cross_entropy (P, y)

Scorpusce = max

“CNTK expresses (nearly) arbitrary neural networks by composing simple
building blocks into complex computational networks, supporting
relevant network types and applications.”

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

h1 = sigmoid (x @ W1 + b1)

h2 = sigmoid (h1 @ W2 + b2)

P = softmax (h2 @ Wout + bout)

ce = cross_entropy (P, y)

ce

Microsoft

Cognitive

Toolkit

• “model function”
• features predictions

• defines the model structure & parameter initialization

• holds parameters that will be learned by training

• “criterion function”
• (features, labels) (training loss, additional metrics)

• defines training and evaluation criteria on top of the model function

• provides gradients w.r.t. training criteria

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

ce

Microsoft

Cognitive

Toolkit

authoring networks as functions

• CNTK model: neural networks are functions
• pure functions

• with “special powers”:
• can compute a gradient w.r.t. any of its nodes

• external deity can update model parameters

• user specifies network as function objects:
• formula as a Python function (low level, e.g. LSTM)

• function composition of smaller sub-networks (layering)

• higher-order functions (equiv. of scan, fold, unfold)

• model parameters held by function objects

• “compiled” into the static execution graph under the hood

Microsoft

Cognitive

Toolkit

Microsoft Cognitive Toolkit, CNTK
Script configure and executes through CNTK Python APIs…

trainer
• SGD

(momentum,
Adam, …)

• minibatching

reader
• minibatch source
• task-specific

deserializer
• automatic

randomization
• distributed

reading

corpus model

network
• model function
• criterion function
• CPU/GPU

execution engine
• packing, padding

Microsoft

Cognitive

Toolkit

from cntk import *

reader
def create_reader(path, is_training):

...

network
def create_model_function():

...
def create_criterion_function(model):

...

trainer (and evaluator)
def train(reader, model):

...
def evaluate(reader, model):

...

main function
model = create_model_function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

As easy as 1-2-3

Microsoft

Cognitive

Toolkit

• prepare data

• configure reader, network, learner (Python)

• train:
mpiexec --np 16 --hosts server1,server2,server3,server4 \
python my_cntk_script.py

workflow

def create_reader(map_file, mean_file, is_training):

image preprocessing pipeline

transforms = [

ImageDeserializer.crop(crop_type='Random', ratio=0.8, jitter_type='uniRatio')

ImageDeserializer.scale(width=image_width, height=image_height, channels=num_channels,
interpolations='linear'),

ImageDeserializer.mean(mean_file)

]

deserializer

return MinibatchSource(ImageDeserializer(map_file, StreamDefs(

features = StreamDef(field='image', transforms=transforms), '

labels = StreamDef(field='label', shape=num_classes)

)), randomize=is_training, epoch_size = INFINITELY_REPEAT if is_training else
FULL_DATA_SWEEP)

how to: reader

def create_reader(map_file, mean_file, is_training):
image preprocessing pipeline
transforms = [

ImageDeserializer.crop(crop_type='Random', ratio=0.8, jitter_type='uniRatio')
ImageDeserializer.scale(width=image_width, height=image_height, channels=num_channels,

interpolations='linear'),
ImageDeserializer.mean(mean_file)

]
deserializer
return MinibatchSource(ImageDeserializer(map_file, StreamDefs(

features = StreamDef(field='image', transforms=transforms), '
labels = StreamDef(field='label', shape=num_classes)

)), randomize=is_training, epoch_size = INFINITELY_REPEAT if is_training else FULL_DATA_SWEEP)

• automatic on-the-fly randomization important for large data sets

• readers compose, e.g. image text caption

how to: reader

Microsoft

Cognitive

Toolkit

• prepare data

• configure reader, network, learner (Python)

• train: --distributed!
mpiexec --np 16 --hosts server1,server2,server3,server4 \
python my_cntk_script.py

workflow

Microsoft

Cognitive

Toolkit

• prepare data

• configure reader, network, learner (Python)

• train:
mpiexec --np 16 --hosts server1,server2,server3,server4 \
python my_cntk_script.py

• deploy
• offline (Python): apply model file-to-file

• your code: embed model through C++ API

• online: web service wrapper through C#/Java API

workflow

Microsoft

Cognitive

Toolkit

CNTK performs!

Microsoft

Cognitive

Toolkit

Layers API
• basic blocks:

• LSTM(), GRU(), RNNUnit()
• Stabilizer(), identity
• ForwardDeclaration(), Tensor[], SparseTensor[], Sequence[], SequenceOver[]

• layers:
• Dense(), Embedding()
• Convolution(), Convolution1D(), Convolution2D(), Convolution3D(), Deconvolution()
• MaxPooling(), AveragePooling(), GlobalMaxPooling(), GlobalAveragePooling(), MaxUnpooling()
• BatchNormalization(), LayerNormalization()
• Dropout(), Activation()
• Label()

• composition:
• Sequential(), For(), operator >>, (function tuples)
• ResNetBlock(), SequentialClique()

• sequences:
• Delay(), PastValueWindow()
• Recurrence(), RecurrenceFrom(), Fold(), UnfoldFrom()

• models:
• AttentionModel()

Microsoft

Cognitive

Toolkit

Layers lib: full list of layers/blocks
• layers/blocks.py:

• LSTM(), GRU(), RNNUnit()
• Stabilizer(), identity
• ForwardDeclaration(), Tensor[], SparseTensor[], Sequence[], SequenceOver[]

• layers/layers.py:
• Dense(), Embedding()
• Convolution(), Convolution1D(), Convolution2D(), Convolution3D(), Deconvolution()
• MaxPooling(), AveragePooling(), GlobalMaxPooling(), GlobalAveragePooling(), MaxUnpooling()
• BatchNormalization(), LayerNormalization()
• Dropout(), Activation()
• Label()

• layers/higher_order_layers.py:
• Sequential(), For(), operator >>, (function tuples)
• ResNetBlock(), SequentialClique()

• layers/sequence.py:
• Delay(), PastValueWindow()
• Recurrence(), RecurrenceFrom(), Fold(), UnfoldFrom()

• models/models.py:
• AttentionModel()

Microsoft

Cognitive

Toolkit

• higher-level features:
• auto-tuning of learning rate and minibatch size

• memory sharing

• implicit handling of time

• minibatching of variable-length sequences

• data-parallel training

• you can do all this with other toolkits, but must write it yourself

Differentiating features

Microsoft

Cognitive

Toolkit

deep dive: handling of time

extend our example to a recurrent network (RNN)

h1(t) = s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) + b1)

h2(t) = s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout)

ce(t) = LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) = max

 no explicit notion of time

Microsoft

Cognitive

Toolkit

deep dive: handling of time

extend our example to a recurrent network (RNN)

h1(t) = s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) + b1)

h2(t) = s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout)

ce(t) = LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) = max

 no explicit notion of time

Microsoft

Cognitive

Toolkit

deep dive: handling of time

extend our example to a recurrent network (RNN)

h1(t) = s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) + b1)

h2(t) = s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout)

ce(t) = LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) = max

 no explicit notion of time

Microsoft

Cognitive

Toolkit

deep dive: handling of time

extend our example to a recurrent network (RNN)

h1(t) = s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x @ W1 + past_value(h1) @ H1 + b1)

h2(t) = s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) = softmax(Wout h2(t) + bout) P = softmax(h2 @ Wout + bout)

ce(t) = LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) = max

Microsoft

Cognitive

Toolkit

deep dive: handling of time

•

+

s

•

+

softmax

W1

b1

Wout

bout

cross_entropy

h1

P

x y

ce

h1 = sigmoid(x @ W1 + past_value(h1) @ H1 + b1)

h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, L)

• CNTK automatically unrolls cycles deferred computation

• Efficient and composable

+ •

H1

z-1

•

+

s

W2

b2

h2

+ •

H2

z-1

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 3

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically
packed and padded

• speed-up is automatic:

deep dive: variable-length sequences

p
a
ra

lle
l
s
e
q
u
e
n
c
e
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7

Naïve , Single
Sequence, 1

Optimized, multi
sequence >20

0 5 10 15 20 25

Naïve

Optimized

Speed comparison on RNNs

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute each minibatch over workers, then aggregate

• challenge: communication cost

• example: DNN, MB size 1024, 160M model parameters

• compute per MB: 1/7 second

• communication per MB: 1/9 second (640M over 6 GB/s)

• can’t even parallelize to 2 GPUs: communication cost already dominates!

Deep dive: data-parallel training

Microsoft

Cognitive

Toolkit

how to reduce communication cost:

communicate less each time

• 1-bit SGD: [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

communicate less often

• automatic MB sizing [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “ON Parallelizability of Stochastic Gradient Descent...”, ICASSP 2014]

• block momentum [K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training…,” ICASSP 2016]

• very recent, very effective parallelization method

• combines model averaging with error-residual idea

Deep dive: data-parallel training

Microsoft

Cognitive

Toolkit

GPU 1 GPU 2 GPU 3

how to reduce communication cost:

communicate less each time

• 1-bit SGD:
[F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...
Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

1-bit quantized with residual

1-bit quantized with residual

data-parallel training

minibatch

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

all-reduce

data-parallel training

node 1 node 2 node 3

S

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

Microsoft

Cognitive

Toolkit

• data-parallelism: distribute minibatch over workers, all-reduce partial gradients

data-parallel training

node 1 node 2 node 3

ring algorithm
O(2 (K-1)/K M)

 O(1) w.r.t. K

Microsoft

Cognitive

Toolkit

how to reduce communication cost:

communicate less each time

• 1-bit SGD: [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

communicate less often

• automatic MB sizing [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “ON Parallelizability of Stochastic Gradient Descent...”, ICASSP 2014]

• block momentum [K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training…,” ICASSP 2016]

• very recent, very effective parallelization method

• combines model averaging with error-residual idea

Deep dive: data-parallel training

Microsoft

Cognitive

Toolkit

Batch Momentum

• Incremental Block Training (IBT)
• Training dataset is processed block-by-block

• Intra-Block Parallel Optimization (IBPO)
• Master-slave architecture to exploit data parallelism

• Each worker works independently on a split of data block

• Local model-updates are aggregated appropriately

• MPI-like framework to coordinate parallel job scheduling and communication

• Redundant workers to reduce wasted time for synchronization of multiple workers

• Blockwise Model-Update Filtering (BMUF)
• Use historic model-update information to guide learning process

Microsoft

Cognitive

Toolkit

Data Partition

• Partition randomly training dataset 𝒟 into 𝑆 mini-
batches

𝒟 = {ℬ𝑖|𝑖 = 1,2,… , 𝑆}

• Group every 𝜏 mini-batches to form a split

• Group every 𝑁 splits to form a data block

• Training dataset 𝒟 consists of 𝑀 data blocks

𝑆 = 𝑀 × 𝑁 × 𝜏

Training dataset is processed block-by-block

Incremental Block Training (IBT)

Microsoft

Cognitive

Toolkit

Intra-Block Parallel Optimization (IBPO)
• Select randomly an unprocessed data block denoted as 𝒟𝑡

• Distribute 𝑁 splits of 𝒟𝑡 to 𝑁 parallel workers

• Starting from an initial model denoted as 𝑾𝑖𝑛𝑖𝑡(𝑡), each worker optimizes
its local model independently by 1-sweep mini-batch SGD with momentum
trick

• Average 𝑁 optimized local models to get 𝑾(𝑡)

Blockwise Model-Update Filtering BMUF

Block Momentum

Microsoft

Cognitive

Toolkit

Iteration

• Repeat IBPO and BMUF until all data blocks are processed
• So-called “one sweep”

• Re-partition training set for a new sweep, repeat the above step

• Repeat the above step until a stopping criterion is satisfied
• Obtain the final global model 𝑾𝑓𝑖𝑛𝑎𝑙

Benchmark Result of Parallel Training on CNTK

13.1 13.1 13.1

13.3

13.1

13.0 13.0 13.0

13.2

13.3

12.9

13.0

13.1

13.2

13.3

13.4

1 4 8 16 32 64

W
ER

(%
)

of GPUs

WER of CE-trained DNN with different # of GPUs

1-bit

BMUF

11.1

10.8

10.6

11.0

11.1

10.8 10.8

10.9 10.9

11.1

10.5

10.6

10.7

10.8

10.9

11.0

11.1

11.2

1 4 8 16 32 64

W
ER

(%
)

of GPUs

WER of CE-trained LSTM with different # of GPUs

1-bit

BMUF

2.9
5.4

8.0
3.3

6.7
10.8

3.7 6.9

13.8

25.5

43.7

4.1
8.1

14.1

27.3

54.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

4 GPUs 8 GPUs 16 GPUs 32 GPUs 64 GPUs

1bit/BMUF Speedup Factors in LSTM Training

1bit-average

1bit-peak

BMUF-average

BMUF-peak

• Training data: 2,670-hour speech from real
traffics of VS, SMD, and Cortana

• About 16 and 20 days to train DNN and LSTM on
1-GPU, respectively

Credit: Yongqiang Wang, Kai Chen, Qiang Huo

Impact

• Achievement
• Almost linear speedup without degradation of model quality

• Verified for training DNN, CNN, LSTM up to 64 GPUs for speech recognition, image
classification, OCR, and click prediction tasks

• Released in CNTK as a critical differentiator

• Used for enterprise scale production data loads

• Production tools in other companies such as iFLYTEK and Alibaba

https://www.microsoft.com/en-us/research/microsoft-improves-programming-flexibility-of-its-ai-toolkit/
https://github.com/Microsoft/CNTK/wiki/Multiple-GPUs-and-machines

Model

Hidden

parameters

1 5 4 3
5 3 5 3
5 9 0 6

D
i = 400
O= 400
a = relu

D
i = 400
O= 400
a = relu

D
i = 400
O= 10
a = sigmoid

Input feature
(X: 12 x 784)

Sequences (one to one)

Output Labels
(Y: 12 x 10)

Problem: Optical character recognition of MNIST data

Sequences (many to one)

Model

Input feature
(X: n x 14 data pnts)

Output Labels
(Y: n x future prediction)

Problem: Time series prediction with IOT data

Sequences (many to many)

Problem: Tagging entities in Air Traffic Controller (ATIS) data

Sequences (many to many)

Sequences (one to many)

Vinyals et al (https://arxiv.org/abs/1411.4555)

Recurrence

Problem: Predict the output of a solar panel for a day based on past N days

Model

Ԧ𝑥(t=0)

Ԧ𝑦(t=1)

ℎ(t=1) Model

Ԧ𝑥(t=1)

Ԧ𝑦(t=2)

ℎ(t=2) Model

Ԧ𝑥(t=2)

Ԧ𝑦(t=3)

Model

Ԧ𝑥(t=10)

Ԧ𝑦(t=11)

Ԧ𝑥(t) : Input (n-dimensional array) at time t

ℎ(t) : Internal State [m-dimensional array] at time t

D
i = n
O= m ℎ = W Ԧ𝑥𝑇 + 𝑏

Ԧ𝑦(t) : Output (c-dimensional array) at time t
C : number of classes

Recurrence

ℎ(t)

D
i = n + m
O= m
a = none

Input Ԧ𝑥(t)
(n)

Internal State ℎ(t-1)
(m)

ℎ(t)

D
i = m
O= c
a = sigmoid

Ԧ𝑦(t)

ℎ(t-1) Model

Ԧ𝑥(t)

Ԧ𝑦(t)

(W, 𝑏)

(W, 𝑏) = Parameters are share & updated across different time steps

Time-series Forecasting

Recurrence

Model

Ԧ𝑥(t=0)

Ԧ𝑦(t=1)

Model

Ԧ𝑥(t=1)

Ԧ𝑦(t=2)

ℎ(t=1) ℎ(t=2) Model

Ԧ𝑥(t=2)

Ԧ𝑦(t=3)

Model

Ԧ𝑥(t=13)

Ԧ𝑦(t=14)

Ԧ𝑥(t)

For numeric: Array of numeric values coming from different sensor
For an image: Pixels in an array, Map the image pixels to a compact representation (say n values)
For word in text: Represent words as a numeric vector using embeddings (word2vec or GLOVE)

Recurrence (Vanishing Gradients)
Doctor Who is a British science-fiction television programme produced by the BBC
since 1963. The programme depicts the adventures of the Doctor, a Time Lord—a
space and time-travelling humanoid alien. He explores the universe in his
TARDIS, a sentient time-travelling space ship. Accompanied by companions, the
Doctor combats a variety of foes, while working to save civilizations and help people
in need. This television series produced by the ….. ?

Model

is

Who

Model

a

is

BBC

ModelModel

by

produced

Model

the

by the

Model

Who

DoctorԦ𝑥(t)

Ԧ𝑦(t)

0

75 blocks

A single set of (W, 𝑏)
has

limited memory

D
i = n
O= m

ℎ = W Ԧ𝑥𝑇 + 𝑏

history

Long-Short Term Memory (LSTM)

ℎ(t-1)

Ԧ𝑦(t)

Ԧ𝐶(t-1)

Ԧ𝑥(t)
(n)

(m)

𝑋

f

×

u

×

+
Ԧ𝐶(t)

×

ℎ(t)

softmax

f
i = n +m
O= m
Act = sigmoid

Ԧ𝑓 = sigmoid(Wf 𝑋
𝑇 + 𝑏𝑓)

Forget gate

u
i = n +m
O= m
Act = sigmoid

𝑢 = sigmoid(Wu 𝑋
𝑇 + 𝑏𝑢)

Update gate

i
i = n +m
O= m
Act = tanh

𝑋∗ = tanh(Wi 𝑋
𝑇 + 𝑏𝑖)

Input

r
i = n +m
O= m
Act = sigmoid

Ԧ𝑟 = sigmoid(Wr 𝑋
𝑇 + 𝑏𝑟)

Result gate

New cell memory

Ԧ𝐶(t) = Ԧ𝐶(t-1) x + xf ui

New history

ℎ(t) = tanh(Ԧ𝐶(t)) x r

i r

tanhtanh

Sequences (many to many) - Classification

Problem: Tagging entities in Air Traffic Controller (ATIS) data

ATIS Data

Domain:
 ATIS contains human-computer queries from the domain of Air Travel Information Services.

Data Summary:
 943 unique words a.k.a. : Vocabulary
 129 unique tags a.k.a.: Labels
 26 intent tags: not used in this tutorial

Sequence Id Input Word (sample) Word Index (in
vocabulary) S0

Word Label Label Index (S2)

19 # BOS 178:1 # O 128:1
19 # please 688:1 # O 128:1
19 # give 449:1 # O 128:1
19 # me 581:1 # O 128:1
19 # the 827:1 # O 128:1
19 # flights 429:1 # O 128:1
19 # from 444:1 # O 128:1
19 # boston 266:1 # B-fromloc.city_name 48:1
19 # to 851:1 # O 128:1
19 # pittsburgh 682:1 # B-toloc.city_name 78:1
19 # on 654:1 # O 128:1
19 # thursday 845:1 # B-depart_date.day_name 26:1
19 # of 646:1 # O 128:1
19 # next 621:1 # B-depart_date.date_relative 25:1
19 # week 910:1 # O 128:1
19 # EOS 179:1 # O 128:1

Sequence Id: 19 indicates – this sentence is the 19th sentence in the data set
Word Index: ###:1 indicates the position of the corresponding word in the vocabulary (total 929
words)
Label Index: ###:1 indicates the position of the corresponding tag in tag index (total 129 tags)

Sequence Tagging (Input / Label Preo

Vectorize Input Tokens (Step 1):
- Create a numerical representation of the input words
- This step is called Embedding

For MNIST data we had:

1 5 4 3
5 3 5 3
5 9 0 6

Label One-hot encoded (Y)

0 0 0 1 0 0 0 0 0 0

For Word data (one-hot encoding looks like)

- For vocabulary size of 929 0 0 1 0

266th element 929th element

For the label data – The one-hot representation is a 129 dimensional vector

Model

ℎ(t)ℎ(t-1) Model

Ԧ𝑥(t)

Ԧ𝑦(t)

0 0 1 0

Ԧ𝑥(t)

E
i = 929
O= 150

L
i = 150
O= 300

D
i = 300
O= 129
a = sigmoid

ℎ(t-1) ℎ(t)

Ԧ𝑦(t)

Embedding Layer (E):

- Projects a word in the input into a vector space: We 𝑋
𝑇 (simple linear embedding)

- Here the weight matrix has dimension of 943 x 150
- Alternatively, more advanced embedding such as Glove can be used as We

examples: language understanding

Task: Slot tagging with an LSTM

19 |x 178:1 |# BOS |y 128:1 |# O

19 |x 770:1 |# show |y 128:1 |# O

19 |x 429:1 |# flights |y 128:1 |# O

19 |x 444:1 |# from |y 128:1 |# O

19 |x 272:1 |# burbank |y 48:1 |# B-fromloc.city_name

19 |x 851:1 |# to |y 128:1 |# O

19 |x 789:1 |# st. |y 78:1 |# B-toloc.city_name

19 |x 564:1 |# louis |y 125:1 |# I-toloc.city_name

19 |x 654:1 |# on |y 128:1 |# O

19 |x 601:1 |# monday |y 26:1 |# B-depart_date.day_name

19 |x 179:1 |# EOS |y 128:1 |# O

y "O" "O" "O" "O" "B-fromloc.city_name"

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Dense | | Dense | | Dense | | Dense | | Dense | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

+------+ +------+ +------+ +------+ +------+

0 -->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+ +------+ +------+ +------+ +------+

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Embed | | Embed | | Embed | | Embed | | Embed | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

x ------>+--------->+--------->+--------->+--------->+------...

BOS "show" "flights" "from" "burbank"

examples: language understanding

Task: Slot tagging with an LSTM

19 |x 178:1 |# BOS |y 128:1 |# O

19 |x 770:1 |# show |y 128:1 |# O

19 |x 429:1 |# flights |y 128:1 |# O

19 |x 444:1 |# from |y 128:1 |# O

19 |x 272:1 |# burbank |y 48:1 |# B-fromloc.city_name

19 |x 851:1 |# to |y 128:1 |# O

19 |x 789:1 |# st. |y 78:1 |# B-toloc.city_name

19 |x 564:1 |# louis |y 125:1 |# I-toloc.city_name

19 |x 654:1 |# on |y 128:1 |# O

19 |x 601:1 |# monday |y 26:1 |# B-depart_date.day_name

19 |x 179:1 |# EOS |y 128:1 |# O

y "O" "O" "O" "O" "B-fromloc.city_name"

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Dense | | Dense | | Dense | | Dense | | Dense | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

+------+ +------+ +------+ +------+ +------+

0 -->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+ +------+ +------+ +------+ +------+

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Embed | | Embed | | Embed | | Embed | | Embed | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

x ------>+--------->+--------->+--------->+--------->+------...

BOS "show" "flights" "from" "burbank"

examples: language understanding

Task: Slot tagging with an LSTM

19 |x 178:1 |# BOS |y 128:1 |# O

19 |x 770:1 |# show |y 128:1 |# O

19 |x 429:1 |# flights |y 128:1 |# O

19 |x 444:1 |# from |y 128:1 |# O

19 |x 272:1 |# burbank |y 48:1 |# B-fromloc.city_name

19 |x 851:1 |# to |y 128:1 |# O

19 |x 789:1 |# st. |y 78:1 |# B-toloc.city_name

19 |x 564:1 |# louis |y 125:1 |# I-toloc.city_name

19 |x 654:1 |# on |y 128:1 |# O

19 |x 601:1 |# monday |y 26:1 |# B-depart_date.day_name

19 |x 179:1 |# EOS |y 128:1 |# O

y "O" "O" "O" "O" "B-fromloc.city_name"

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Dense | | Dense | | Dense | | Dense | | Dense | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

+------+ +------+ +------+ +------+ +------+

0 -->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+ +------+ +------+ +------+ +------+

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Embed | | Embed | | Embed | | Embed | | Embed | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

x ------>+--------->+--------->+--------->+--------->+------...

BOS "show" "flights" "from" "burbank"

examples: language understanding

Task: Slot tagging with an LSTM

19 |x 178:1 |# BOS |y 128:1 |# O

19 |x 770:1 |# show |y 128:1 |# O

19 |x 429:1 |# flights |y 128:1 |# O

19 |x 444:1 |# from |y 128:1 |# O

19 |x 272:1 |# burbank |y 48:1 |# B-fromloc.city_name

19 |x 851:1 |# to |y 128:1 |# O

19 |x 789:1 |# st. |y 78:1 |# B-toloc.city_name

19 |x 564:1 |# louis |y 125:1 |# I-toloc.city_name

19 |x 654:1 |# on |y 128:1 |# O

19 |x 601:1 |# monday |y 26:1 |# B-depart_date.day_name

19 |x 179:1 |# EOS |y 128:1 |# O

y "O" "O" "O" "O" "B-fromloc.city_name"

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Dense | | Dense | | Dense | | Dense | | Dense | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

+------+ +------+ +------+ +------+ +------+

0 -->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+ +------+ +------+ +------+ +------+

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Embed | | Embed | | Embed | | Embed | | Embed | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

x ------>+--------->+--------->+--------->+--------->+------...

BOS "show" "flights" "from" "burbank"

Task: Slot tagging with an LSTM

model = Sequential ([

Embedding(150),

RecurrentLSTM(300),

Dense(labelDim)

)

y "O" "O" "O" "O" "B-fromloc.city_name"

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Dense | | Dense | | Dense | | Dense | | Dense | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

+<-----|-----+ | | | |

| +------+ | +------+ +------+ +------+ +------+

+->| LSTM |->+ LSTM |-->| LSTM |-->| LSTM |-->| LSTM |-->...

+------+ +------+ +------+ +------+ +------+

^ ^ ^ ^ ^

| | | | |

+-------+ +-------+ +-------+ +-------+ +-------+

| Embed | | Embed | | Embed | | Embed | | Embed | ...

+-------+ +-------+ +-------+ +-------+ +-------+

^ ^ ^ ^ ^

| | | | |

x ------>+--------->+--------->+--------->+--------->+------...

BOS "show" "flights" "from" "burbank"

examples: language understanding

Error or Loss Function

Loss
function

ce = −σ𝑗=0
9 𝑦𝑗 𝑙𝑜𝑔 𝑝𝑗

Cross entropy
error

Label One-hot encoded (Ԧ𝑦(t))

0 0 0 0 0

Model

Predicted Probabilities (p)

Ԧ𝑥(t)

943 𝑑𝑖𝑚

0 0 1 0

129 𝑑𝑖𝑚

129 𝑑𝑖𝑚

Train Workflow

ATIS
Train

1
2

8
 s

a
m

pl
es

(m
in

i-
ba

tc
h

)

.

.

.

.

1

2

3

128

Input feature (128 x Ԧ𝑥(t))

One-hot
encoded
Label

(Y: 128 x
129/sample
Or word in

sequence)

z = model():

return

Sequential([

Embedding(emb_dim=150),

Recurrence(LSTM(hidden_dim=300),

go_backwards=False),

Dense(num_labels = 129)

])

Loss cross_entropy_with_softmax(z,Y)

Trainer(model, (loss, error), learner)

Trainer.train_minibatch({X, Y})

Error
(optional)

classification_error(z,Y)

Learner
sgd, adagrad etc, are solvers to estimate

Test Workflow

ATIS
Test

1
2

8
 s

a
m

pl
es

(m
in

i-
ba

tc
h

)

.

.

.

.

1

2

3

128

Input feature (128 x Ԧ𝑥(t))

One-hot
encoded
Label

(Y: 128 x
129/sample
Or word in

sequence)

z = model():

return

Sequential([

Embedding(emb_dim=150),

Recurrence(LSTM(hidden_dim=300),

go_backwards=False),

Dense(num_labels = 129)

])

Loss cross_entropy_with_softmax(z,Y)

Trainer(model, (loss, error), learner)

Trainer.test_minibatch({X, Y})

Error
(optional)

classification_error(z,Y)

Learner
sgd, adagrad etc, are solvers to estimate

Test Workflow

ATIS
Train

1
2

8
 s

a
m

pl
es

(m
in

i-
ba

tc
h

)

.

.

.

.

1

2

3

32

Input feature (32 x Ԧ𝑥(t))

One-hot
encoded
Label

(Y: 128 x
129/sample
Or word in

sequence)

z = model():

return

Sequential([

Embedding(emb_dim=150),

Recurrence(LSTM(hidden_dim=300),

go_backwards=False),

Dense(num_labels = 129)

])

Loss cross_entropy_with_softmax(z,Y)

Trainer(model, (loss, error), learner)

Trainer.train_minibatch({X, Y})

Error
(optional)

classification_error(z,Y)

Learner
sgd, adagrad etc, are solvers to estimate

Prediction Workflow

Any Data
string

Input feature (new X: 1 x 8 x (1x943))

Model.eval(new X)

Predicted Softmax Probabilities

'BOS flights from new york to seattle EOS'

Output prediction (: 1 x 8 x (1x129))

115

Neural network paradigms

Background

First described in the context of machine translation
 Cho, et al., “Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation”

(2014). https://arxiv.org/abs/1406.1078.

It is a natural fit for:
 Automatic text summarization:

• Input sequence: full document
• Output sequence: summary document

 Word to pronunciation models:
• Input sequence: character [grapheme]
• Output sequence: pronunciation[phoneme]

 Question – Answering models:
• Input sequences: Query and document
• Output sequence: Answer

https://arxiv.org/abs/1406.1078

Basic Theory
A sequence-to-sequence model consists of two main pieces:

(1) an encoder,
(2) a decoder, and
(3) an attention module (optional)

Sequence to Sequence Mechanism:

 Encoder
• Processes the input sequence into a fixed representation
• This representation is fed into the decoder as a context a.k.a thought vector

 Decoder
• Uses some mechanism to decode the processed information into an output sequence
• This is a language model that is augmented with some "strong context“
• Each symbol that it generates is fed back into the decoder for additional context

What is “thought-vector”
Term popularized by Geoffrey Hinton

“What I think is going to happen over the next few years is this ability to turn sentences into
thought vectors is going to rapidly change the level at which we can understand documents”

What is a thought-vector:
 Like an embedding similar to (word2vec & GloVe) but instead encodes several words, or ideas, or… a “thought”

 In basic sequence to sequence, the thought vector represents:
• the encoded version of the input sequence after running it through the encoder RNN

• the hidden state of the encoder after all of the words in the input sequence have passed through I

• The decoder’s hidden state is then initialized with this thought vector

Example

D
i = n + m
O= m
a = none

Input Ԧ𝑥(t)
(n)

Internal State ℎ(t-1)
(m)

ℎ(t)

D
i = m
O= n
a = none

Ԧ𝑜(t)

(W, 𝑏)

ht = tanh(Uxt + Wht-1)

ot = Vht

def step(x):
h = C.tanh(C.times(U, x) + C.times(W, h))
o = C.times(V, h)
return o

For every input:
• the hidden state is updated
• some output is returned

Sequence to Sequence Decoder

In the sequence-to-sequence decoder:
 Output o is projected through a dense layer and softmax function
 The resultant word is directed back into itself as the input for the next step
 This is a greedy-decoding approach

Sequence to Sequence Decoder

Steps in decoding:

 First step is to initialize the decoder RNN with the thought vector as its hidden state

 Use a "sequence start" tag (e.g. <s>) as input to prime the decoder to start generating an output sequence

 The decoder keeps generating outputs until it hits the special "end sequence" tag (e.g. </s>)

def model_greedy(input): # (input*) --> (word_sequence*)

Decoding is an unfold() operation starting from sentence_start.

We must transform s2smodel (history*, input* -> word_logp*)

into a generator (history* -> output*) which holds 'input' in its closure.

unfold = UnfoldFrom(lambda history: s2smodel(history, input) >> hardmax,

stop once sentence_end_index was max-scoring output

until_predicate=lambda w: w[...,sentence_end_index],

length_increase=length_increase)

return unfold(initial_state=sentence_start, dynamic_axes_like=input)

Sequence to Sequence Problems

Squeezing all the input sequence information into a single vector

At each time step:
 the hidden state h gets updated with the most recent information, and
 therefore h is gets "diluted" in information as it processes each token

Token position influence
 Even with a relatively short sequence, the last token will always get the last say and
 therefore the thought vector is biased/weighted towards that last word

For Machine Translation:
 We run the encoder backwards also to help mitigate this problem
 Need a more systematic approach

Attention Mechanism

124

psyllium psychologyvs.

Attention Mechanism

Attention Mechanism

Helps to solve the “long-sequence” and alignment problem

Replace single thought vector (and only as an initial context) with:
 Each decoding step directly use information from the encoder
 All of the hidden states from the encoder are available to us (instead of just the final one); and
 The decoder learns which weighted sum of hidden states, given the current context and input, to use

How is it done:
 Learn which encoder hidden states are important given current context and input; and
 Augment the decoder’s current hidden state with information from those states

Attention Mechanism

Key Idea: Learn which encoder states are important given current context and input

1. Compute similarity between different encoder states w.r.t. a given decoder state
 Dot product between ℎ𝑖 and 𝑑

 Cosine distance between ℎ𝑖 and 𝑑

 Projected similarity given by
𝑢𝑖 = 𝑣𝑇 tanh 𝑊1ℎ𝑖 +𝑊2𝑑

Where ℎ𝑖 is the hidden state for each encoding RNN unit and 𝑑 is the corresponding decoder state
Note: v is a learnable vector parameter; W1 and W2 are learnable matrix parameters

 Finally the attention score for a given comparison can be computed as:
𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑢𝑖

2. Augment the decoder’s current hidden state with information from those states

 Create a vector in the same space as the hidden states that consists of a weighted sum of the encoder
hidden states

𝑑′ =

𝑖=1

𝑇𝐴

𝑎𝑖ℎ𝑖

 New hidden state for predicting current word:
𝐷 = 𝑑 + 𝑑′

Attention Mechanism

attention

Attention Mechanism

Decoding with Attention

Take a greedy approach and output the most probable word at each step
 Does not render well in practice

Consider every single combination at each step
 However, that is generally computationally intractable

Strike a compromise using beam search
 Instead, we use a beam search decoder with a given depth
 The depth parameter considers how many best candidate solutions to keep at each step
 This results in a heuristic for the global optimal that works quite well
 Indeed, a beam search of 3 gives very good results in most situations.

Microsoft

Cognitive

Toolkit

ReasoNet: Learning to Stop Reading
in Machine Comprehension

Yelong Shen, Po-Sen Huang, Jianfeng Gao, Weizhu Chen

Microsoft Research

CNTK Tutorial: Pengcheng He, Amit Agarwal, Sayan Pathak

Problem Definition

• Machine Comprehension
• Teach machine to answer questions given an input passage

Query Who is the producer of Doctor Who?

Passage Doctor Who is a British science-fiction television programme produced
by the BBC since 1963. The programme depicts the adventures of the
Doctor, a Time Lord—a space and time-travelling humanoid alien. He
explores the universe in his TARDIS, a sentient time-travelling space ship.
Its exterior appears as a blue British police box, which was a common
sight in Britain in 1963 when the series first aired. Accompanied by
companions, the Doctor combats a variety of foes, while working to save
civilisations and help people in need.

Answer BBC

Related Work

Single Step Reasoning
[Kadlec et al. 2016, Chen et al. 2016]

Multiple Step Reasoning
[Hill et al. 2016, Trischler et al. 2016 , Dhingra et al.
2016, Sordoni et al. 2016, Kumar et al. 2016]

How many steps?

QueryQuery

Xt

Passage

Attention

S1 St St+1 St+2

Query

Xtfatt(θx) Xt+1fatt(θx)

Passage

Attention

Different levels of complexity

Query Who was the 2015 NFL MVP?

Passage The Panthers finished the regular season with a 15–1 record,
and quarterback Cam Newton was named the NFL Most
Valuable Player (MVP).

Answer Cam Newton

Easier

Harder Query Who was the #2 pick in the 2011 NFL Draft?

Passage Manning was the #1 selection of the 1998 NFL draft, while
Newton was picked first in 2011. The matchup also pits the
top two picks of the 2011 draft against each other: Newton
for Carolina and Von Miller for Denver.

Answer Von Miller

ReasoNet: Learning to Stop Reading

• Dynamic termination based on the complexity of query and passage

• Instance-based RL objectives

S1 St St+1 St+2

Query

Xt

Tt Tt+1

ftg(θtg) ftg(θtg)
False

True

fa(θa)

True

at

fa(θa)

at+1

fatt(θx) Xt+1fatt(θx)

False

Passage

Termination

Answer

Attention

Controller

ReasoNet Architecture

QueryQuery

Passage

137

ReasoNet Architecture

QueryQuery

Passage

6

ReasoNet Architecture

S1 St St+1

QueryQuery

Xtfatt(θx)

Passage

Attention

Controller

6

ReasoNet Architecture

S1 St St+1

Query

Xt

Tt

ftg(θtg)
False

True

fa(θa)

fatt(θx)

Passage

Termination

Attention

Controller

6

ReasoNet Architecture

S1 St St+1

QueryQuery

Xt

Tt

ftg(θtg)
False

True

fa(θa)

at

fatt(θx)

Passage

Termination

Answer

Attention

Controller

6

ReasoNet Architecture

S1 St St+1 St+2

QueryQuery

Xt

Tt Tt+1

ftg(θtg) ftg(θtg)
False

True

fa(θa)

True

at

fa(θa)

at+1

fatt(θx) Xt+1fatt(θx)

False

Passage

Termination

Answer

Attention

Controller

6

RL Objectives

• Action: termination, answer

• Reward: 1 if the answer is correct,
0 otherwise (Delayed Reward)

• Expected total reward

• REINFORCE algorithm

S1 ST-1 ST

Query

XT-1

TT-1 TT

ftg(θtg) ftg(θtg)
False

True

fa(θa)

aT

fatt(θx)

Passage

Termination

Answer

Attention

Controller

Instance-based baseline
7

CNN / Daily Mail Reading Comprehension Task

Query passenger @placeholder , 36 , died at the scene

Passage (@entity0) what was supposed to be a fantasy sports car ride at @entity3
turned deadly when a @entity4 crashed into a guardrail . the crash took place
sunday at the @entity8 , which bills itself as a chance to drive your dream car on
a racetrack . the @entity4 's passenger , 36 - year - old @entity14 of @entity15 ,
@entity16 , died at the scene , @entity13 said . the driver of the @entity4 , 24 -
year - old @entity18 of @entity19 , @entity16 , lost control of the vehicle , the
@entity13 said . he was hospitalized with minor injuries . @entity24 , which
operates the @entity8 at @entity3 , released a statement sunday night about the
crash . " on behalf of everyone in the organization , it is with a very heavy heart
that we extend our deepest sympathies to those involved in today 's tragic
accident in @entity36 , " the company said . @entity24 also operates the
@entity3 -- a chance to drive or ride in @entity39 race cars named for the
winningest driver in the sport 's history . @entity0 's @entity43 and @entity44
contributed to this report .

Answer @entity14

[Hermann et al. 2015]

Termination Step Histogram

0

500

1000

1500

2000

2500

1 2 3 4 5

Step

CNN Dataset

Multiple Steps CNN Daily Mail

Iterative AR [Sordoni et al. 16] 73.3 -

EpiReader [Trischler et al. 16] 74.0 -

GA Reader [Dhingra et al. 16] 73.8 75.7

ReasoNet 74.7 76.6

BIDAF [Seo et al. 16] (Nov 5 2016) 77.1 78.3

Results

Accuracy (%) CNN Daily Mail

Attentive Reader [Hermann et al. 15] 63.0 69.0

AS Reader [Kadlec et al. 16] 69.5 73.9

Stanford AR [Chen et al. 16] 72.4 75.8
Single step

Multiple steps

(Sep 17 2016)

Microsoft

Cognitive

Toolkit

CNTK’s approach to the two key questions:

• efficient network authoring
• networks as function objects, well-matching the nature of DNNs

• focus on what, not how

• familiar syntax and flexibility in Python

• efficient execution
• graph parallel program through automatic minibatching

• symbolic loops with dynamic scheduling

• unique parallel training algorithms (1-bit SGD, Block Momentum)

Microsoft

Cognitive

Toolkit

• integration with C#/.Net, R, Keras, HDFS, and Spark

• continued C#/.Net integration; R

• Keras back-end

• HDFS

• Spark

• technology

• handle models too large for GPU

• optimized nested recurrence

• ASGD

• 16-bit support, ARM, FPGA

on our roadmap

Microsoft

Cognitive

Toolkit

• ease of use
• what, not how

• powerful library

• minibatching is automatic

• fast
• optimized for NVidia GPUs & libraries

• easy yet best-in-class multi-GPU/multi-server support

• flexible
• Python and C++ API, powerful & composable

• 1st-class on Linux and Windows

• train like MS product groups: internal=external version

Cognitive Toolkit:
deep learning like Microsoft product groups

Microsoft

Cognitive

Toolkit

Cognitive Toolkit: democratizing the AI tool chain

• Web site: https://cntk.ai/

• Docs: https://cntk.ai/pythondocs

• Github: https://github.com/Microsoft/CNTK

• Wiki: https://github.com/Microsoft/CNTK/wiki

Ask Questions: www.stackoverflow.com with cntk tag

